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The far-field sound of an unstable wave packet undergoing transition in a low-Mach- 
number, flat-plate boundary layer is investigated in the framework of Lighthill’s 
acoustic analogy. Detailed accounts of the wave packet evolution are obtained 
by solving the full incompressible Navier-Stokes equations at Reh. = 1000. The 
numerically simulated flow structures show qualitative agreement with experimental 
observations of the fundamental breakdown type. The acoustic calculations are 
focused on the quadrupole source functions arising from Reynolds stress fluctuations. 
The wave packet is shown to produce negligible sound throughout the primary 
and secondary instability stages. Dramatic amplification of the Reynolds stress 
quadrupoles occurs as a result of the disintegration of the detached high-shear layer 
and the associated vortex shedding near the boundary layer edge. The dominant 
frequency of source oscillations coincides with that of vortex shedding. 

1. Introduction 
Boundary layer flow transition has long been suggested as a potential noise source 

in both marine (sonar-dome self-noise) and aeronautical (aircraft cabin noise) ap- 
plications, owing to the highly transient nature of the process (Farabee, Hansen 
& Keltie 1989). The design of effective noise control strategies relies upon a clear 
understanding of the source mechanisms associated with the unsteady flow dynamics 
during transition. Owing to formidable mathematical difficulties, theoretical treatment 
of transition noise based on the fundamental equations has been limited to the early 
linear and weakly nonlinear stages, under simplifying assumptions (Haj-Hariri & 
Akylas 1986; Akylas & Toplosky 1986). 

A powerful alternative for predicting flow-induced sound is the acoustic analogy 
theory proposed by Lighthill (1952). In this theory, the exact equations for mass 
and momentum conservation are combined to form a linear, non-homogeneous 
wave equation for the acoustic density fluctuation, forced by equivalent source terms 
representing nonlinear flow dynamics in a spatially concentrated region. At low 
Mach number the source functions can be determined by considering an equivalent 
incompressible flow, a mathematical approximation justified by Crow (1970) using a 
singular perturbation procedure. Computational validation of the Lighthill acoustic 
analogy and related aeroacoustic theories (Powell 1964; Howe 1975; Mohring 1978) 
has been provided by Mitchell, Lele & Moin (1995), who considered a model problem 
involving the merging of two co-rotating vortices. Acoustic analogy predictions were 



198 M.  Wung, S. K .  Lele and P. Moin 

shown to be in excellent agreement with the results computed directly from the 
compressible Navier-Stokes equations. 

Lighthill's theory and its extensions have been used extensively in the study of flow 
noise from transitional and turbulent boundary layers. According to the developments 
of Curle (1955) and Powell (1960), fluctuating velocities produce quadrupole sound 
sources, while fluctuating wall shear stresses take the form of dipole sources. The exact 
role played by the unsteady surface shear stress is controversial. Landahl (1975) gave 
an order of magnitude estimate of the turbulent boundary layer noise, based on the 
Lighthill analogy and a conceptual 'two-scale model' for boundary layer turbulence. 
He also pointed out the qualitative similarity between the process of breakdown in 
transition and the bursting phenomenon in a turbulent boundary layer. The dipole 
radiation was found to be much stronger than the quadrupole radiation at moderate 
velocities. In contrast, Howe (1979) argued that all the wall shear stress perturbations 
in the supersonic low-wavenumber range correspond to acoustic waves propagating 
in the boundary layer, and hence should not be considered as generation terms. Their 
presence actually diminishes the radiation intensity. Howe's (1979) analysis indicates 
that at low Mach numbers, the wall-stress effect is in general negligibly small. 

Lauchle (1980) considered the intermittent regime in a small-Mach-number bound- 
ary layer where flow alternates between laminar and turbulent. The fluctuating wall 
shear stress, hypothesized as the dominant noise source, is modelled using an inter- 
mittency indicator function. The radiated noise spectrum is predicted using Lighthill's 
analogy. The volume quadrupole contribution is excluded, however, owing to difficul- 
ties in modelling the fluctuating Reynolds stresses in the intermittent regime. Lauchle 
(1981, 1989) and Marboe & Lauchle (1992) later pursued a more ad hoc approach 
based on the Liepmann analogy (Laufer, Ffowcs Williams & Childress 1964), which 
postulates that the fluctuation of the boundary layer displacement thickness acts like 
a piston to the adjacent acoustic medium, giving rise to weak monopole radiation. 
The intermittency function is again used to model the displacement-thickness fluctu- 
ations. A related approach, the 'two-fluids model' (Sornette & Lagier 1984; Lagier 
& Sornette 1986), also exists and has reviewed by Lauchle (1991) and Marboe & 
Lauchle (1992). 

In the present work, an approach which combines direct numerical simulation of the 
source field with the Lighthill acoustic analogy is utilized. The transitional boundary 
layer flow is computed by solving the incompressible Navier-Stokes equations without 
model assumptions, thus allowing a direct evaluation of the pseudosound as well as the 
volume acoustic source functions. The latter are used to calculate the radiated pressure 
field during the transition from primary instability to the laminar breakdown stage. 
In particular, one is interested in identifying specific flow processes and structures that 
are effective noise generators. Owing to the neglect of the compressibility effect in the 
boundary layer simulation, the present study does not give a definitive description 
of the effect of the unsteady wall shear stress. This issue is discussed briefly in the 
context of the historical controversy. 

Natural transition in a boundary layer starts with modulated Tollmien-Schlichting 
(T-S) wave trains initiated by random excitations from free-stream turbulence (Gaster 
1993). The laminar breakdown process which destroys the smooth, orderly flow 
pattern is a localized event triggered by instability mechanisms (Kachanov 1994). 
These observations suggest that, without loss of generality, one could simulate the 
transition phenomena by following the evolution of a T-S wave packet instead of 
a periodic wave series as in controlled experiments (e.g. Klebanoff, Tidstrom & 
Sargent 1962; Kachanov & Levchenko 1984). This results in considerable savings 
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in computer memory and CPU time due to the reduced domain size. Furthermore, 
the amplitude modulation allows the wave packet to evolve spontaneously into a 
turbulent spot, which cannot be achieved if the initial instability wave is strictly 
periodic (Kachanov 1994). From an acoustic viewpoint, tracking an isolated wave 
packet has the advantage that the linkage between the calculated sound signal and 
the specific transition stage is apparent. 

The numerical simulation of the transitional boundary layer is a significant part 
of the present study. However, the sheer volume of literature in this area prevents a 
thorough review here. A brief overview of relevant works and their relation with the 
present simulation is deferred to $3.1. The reader is advised to consult two recent 
review articles (Kleiser & Zang 1991 ; Kachanov 1994) for additional information. 

The presentation is organized as follows. Section 2 outlines the Lighthill acoustic 
analogy in a rational framework and expresses the far-field asymptotic solution 
in terms of integrals of near-field source terms. Section 3 describes numerical 
and physical aspects of wave packet transition, which follows basically the K-type 
breakdown route : The amplification of two- and three-dimensional instabilities leads 
to the formation of a streamwise vortex system, or lambda vortex, above which a 
detached high-shear layer of streamwise velocity is induced. The high-shear layer, 
susceptible to stronger inflexional instability, creates and sheds eddies of smaller scale 
as it graduately disintegrates. The computed source field data are used in $ 4  to 
evaluate the volume source functions for the far-field acoustic radiation. It is found 
that the major source of quadrupole sound is the production of the instantaneous 
Reynolds stress during the high-shear-layer breakdown and eddy shedding. Little 
sound is produced during the early instability stages. Finally, $5 summarizes the 
major findings of this work. 

2. Formulation 

to generate, in dimensionless form (Goldstein 1976), 
The continuity and momentum equations for a compressible flow can be combined 

where 

T,j = p (u; - U , )  ( U j  - Uj)  + 2 (; - .) - z,j 

is the Lighthill stress tensor. It contains Reynolds stress defined in terms of the 
excess velocity relative to a uniform free-stream motion Ui = (1,0,0), deviation from 
isentropy (the second term, where y denotes the ratio of specific heats), and the 
viscous part of the Stokes stress tensor 

1- auL auj 2 auk -+- - -6 .- 
' I  - Re 7 axj ax; 3 ' ' a ~ ~  

*.. - - 

In (2.1)-(2.3) the velocity components and the thermodynamic variables are non- 
dimensionalized with respect to the undisturbed free-stream values U k ,  p k  and &, 
respectively. The spatial coordinates are defined by xi = xi/L;, where L; is a 
characteristic length scale of the flow field such as the boundary layer displacement 
thickness, and X I  = Mx;.  The latter, scaled relative to the characteristic acoustic 
wavelength, is introduced to facilitate the description of acoustic wave propagation. 
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Both x i  (yi) and X i  will be used simultaneously throughout this paper to represent 
the near-field source region and the far-field observation points, respectively, bearing 
in mind that they are not independent of one another. The non-dimensional time, 
t = t’U&/L;, is the same for both acoustic and fluid dynamic disturbances. The 
Mach number is defined in terms of the equilibrium sound speed in the free stream, 
M = U&/c6,; c6, = (yp&/p6,)’I2, and the Reynolds number is defined as Re = U’L)/v’. 

Equation (2.1) is equivalent to a convective wave equation for a medium moving 
uniformly along the X I  axis, if the right-hand side is viewed as distributed source 
terms. The source terms, typically dominated by the Reynolds stresses, are quadrati- 
cally small outside the boundary layer because the unsteady motions there are purely 
acoustic. Within the disturbance region in the boundary layer, the source terms 
are treated as incompressible quantities, decoupled from compressible acoustic dis- 
turbances, on the basis that the latter are much smaller in magnitude. Thus, the 
flow noise issue is reduced to a problem of finding the solution to (2.1) under the 
appropriate boundary conditions, once the hydrodynamic field has been determined. 

For a low-Mach-number flow, the proper scaling for the thermodynamic variables 
in the boundary layer is 

p = 1 + M2p, p = 1 + M2D. (2.4) 

When these rescaled variables are used and terms of O ( M 2 )  or smaller are truncated, 
the governing equations for an ideal gas can be approximated by 

? - l a  (2.7) 
as as 1 a2s y - 1 1 a2p 
- + +  .-=- -+--- +- at ’ a x j  PrReaxjaxj y PrReaxjaxj Re 

In (2.7) @ denotes the dimensionless dissipation function, and the entropy, s” = p / y - p ,  
is related to the second term in the Lighthill stress tensor (cf. (2.2)). Equations (2.5)- 
(2.7) suggest that it is only necessary to solve the incompressible version of the 
governing equations in order to evaluate the acoustic source terms. By using (2.4) 
and (2.5) in (2.1) and (2.2) and consistently ignoring the O(M2)  terms, one can derive 
the approximate Lighthill stress tensor 

Tij ui+j + &js” - ~ i j .  (2.8) 

The effect of entropy fluctuations in sound generation is generally negligible except 
under extreme conditions, such as in the presence of a strong temperature gradient 
or multi-phase flow (Crighton 1975). In the present case, it is insignificant given 
the reasonably large Reynolds number to be considered (Reh. = 1000). It is worth 
pointing out, however, that even in cases where entropy production is not negligible, 
its effect can be accounted for by solving the reduced energy equation (2.7) together 
with the incompressible Navier-Stokes equations, rather than resorting to a fully 
compressible numerical procedure. This can lead to considerable savings in computer 
resource. 

The O ( M )  convective term in the wave operator in (2.1) creates merely a small 
Doppler shift whose effect can be represented as a multiplicative correction (Lighthill 
1993). If the bulk convection effect is ignored, (2.1) becomes the Lighthill equation 



Sound radiation during laminar boundary layer breakdown 201 

in a uniform acoustic medium at rest. Based on the result of Powell (Powell 1960; 
Crighton et al. 1992), its solution in the upper half-plane X 2  3 0 can be written as 

where X’ = (XI, -X2, X 3 )  is the image of position X in the rigid surface X 2  = 0. 
Repeated indices i and j represent summmation over 1 to 3,  whereas CI and p are 
summed over 1 and 3 only. The two volume integrals represent a volume distribution 
of acoustic quadrupoles and their reflection in the rigid surface, respectively. They are 
evaluated over the entire unsteady flow region above the wall. The surface integral, 
evaluated on the wall, involves in-plane dipoles associated with the fluctuating surface 
shear stress, whose significance as a sound source is controversial. An overview of 
the shear stress controversy can be found in Crighton et al. (1992). The relative 
strengths of the volume and surface source terms depend upon the properties of the 
unsteady Reynolds stress and wall shear stress, in addition to the apparent Mach 
number scaling. Considerable simplification can be achieved in the far field under 
the condition that the source region is acoustically compact, as will be discussed 
in 94. 

3. Boundary layer simulation 
3.1. Background 

Transition to turbulence from a laminar boundary layer starts with a sequence of 
instability events, including two-dimensional (linear) primary instability and three- 
dimensional (nonlinear) secondary instability. Several paths to laminar breakdown, 
notably the fundamental and subharmonic ( K -  and H-type, respectively), have been 
identified through ‘controlled’ experiments (e.g. Klebanoff et al. 1962; Kachanov & 
Levchenko 1984). In the K-type breakdown the primary T-S wave and the secondary 
wave have the same streamwise wavelength. The secondary instability leads to the 
formation of a streamwise vortex system known as the lambda vortex, which in 
turn induces a detached high-shear layer on top. The high-shear layer intensifies, 
elongates, and develops instability. It breaks down gradually to generate smaller 
vortices, observed as velocity ‘spikes’. The above K-breakdown scenario has been 
recorded in remarkable detail in recent experiments (Borodulin & Kachanov 1992; 
Kachanov 1994). 

Numerical simulation of boundary layer transition based on the full Navier-Stokes 
equations requires enormous computer time and memory. As a result, the majority 
of simulations use the temporal formulation (e.g. Wray & Hussaini 1984; Spalart 
& Yang 1987; Zang & Hussaini 1987, 1990). In particular, the simulation of 
Zang & Hussaini (1990) provides a detailed description of both fundamental and 
subharmonic breakdown processes up to the two-spike stage. Spatial simulations are 
mostly limited to stages prior to breakdown (Fasel 1990; Fasel, Rist & Konzelmann 
1990; Kleiser & Zang 1991), with the notable exception of Rai & Moin (1993). The 
latter study involves a relatively high level of free-stream turbulence, so that the 
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transition process does not necessarily follow the classical routes for small-amplitude 
T-S wave series. A comprehensive survey of pre-1991 literature is given by Kleiser & 
Zang (1991). 

Gaster & Grant (1975) first directed attention to the effect of wave modulation in 
the transition process, which is essential to the formation of intermittency or turbulent 
spots observed in natural (uncontrolled) transition (Kachanov 1994). A number of 
experimental studies on modulated T-S waves are summarized in the review article 
by Kachanov (1994). The results indicate that only one or two periods of a wave are 
sufficient to cause resonant amplification, and that the nonlinear breakdown process 
within each wave packet proceeds in qualitatively the same way as in periodic wave 
series. The experiment by Gaster (1993) shows that amplitude modulation causes 
nonlinear amplification to occur at a much lower amplitude than in periodic wave 
series. At advanced stages of transition, high-frequency oscillations of 5-6 times 
the primary wave frequency are found to ride on the primary packet. These high- 
frequency bursts are identified with instabilities of the high-shear layer, and are the 
source of ‘hairpin’ vortices of finer scale. 

Navier-Stokes simulations of wave packet transition in a boundary layer include, 
for example, those of Fasel (1990), Breuer (1990), and Henningson, Lundbladh 
& Johansson (1993). The initial disturbances used in these simulations consist of 
either a short-duration pulse excitation or a counter-rotating vortex pair. As a 
consequence, the transition processes are of ‘bypass’ type, skipping the T-S and 
secondary instability processes. Henningson, Spalart & Kim (1987) conducted direct 
simulations of turbulent spots in plane Poiseuille and boundary layer flows. 

The numerical simulation carried out in the present work is focused on a strongly 
modulated T-S wave packet excited at the inflow boundary using a combination of 
two- and three-dimensional T-S eigenmodes for a short time duration. The simulation, 
based on a spatial formulation that allows the streamwise growth of the boundary 
layer, continues to the multiple-spike stage, just prior to turbulent spot formation. The 
laminar breakdown process is shown to follow closely the classical K-type, confirming 
earlier experimental observations (Kachanov 1994). 

3.2. Numerical method and boundary conditions 
In order to evaluate the acoustic sources arising from wave packet transition, (2.5) 
and (2.6) are solved using an incompressible Navier-Stokes solver developed by Le & 
Moin (1991). The equations are discretized using finite difference on a staggered grid, 
with uniform grid spacing in the streamwise (XI) and spanwise (xj) directions. In the 
wall-normal direction (xz), non-uniform mesh is employed to allow grid refinement 
near the wall. Time advancement is of three-step Runge-Kutta type combined with 
a fractional step method. Each sub-step treats the convective terms explicitly and 
the viscous terms implicitly. The Poisson equation is solved at the final sub-step to 
satisfy the divergence-free constraint. The numerical scheme is second-order accurate 
in both space and time. 

The domain of integration consists of a rectangular box parallel to the flow 
direction. The no-slip condition is applied on the solid wall surface. At the free- 
stream boundary 20 displacement thicknesses away from the wall, a normal velocity 
distribution based on the Blasius solution and zero vorticity are prescribed (notice 
that the normal velocity specification applies only to the near-field computation using 
the incompressible approximation; it by no means restricts the induced acoustic wave 
propagation to the far field, to be calculated separately). In the spanwise direction 
periodicity is assumed for all dependent variables. 
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The unsteady wave packet is introduced into the computational domain by imposing 
the following upstream boundary conditions : 

where uB(x2) represents the Blasius velocity for a two-dimensional boundary layer. 
Quantities ufD(x2) and uYf(x2) are the least-stable eigenmodes and a is the corre- 
sponding eigenvalue, obtained by solving the Orr-Sommerfeld and Squire equations 
for given frequency /? and oblique angle 4. The eigenfunctions are normalized such 
that the maximum streamwise velocity has unit magnitude. The same excitation 
frequency is applied to both two- and three-dimensional disturbances, which are sep- 
arated in phase by angle 8. The streamwise extent of the wave packet is determined 
by the parameter z in the time-modulating envelope. In addition, symmetry relative 
to the spanwise centre x3 = 0 is destroyed deliberately by the function g(x3), whose 
explicit form will be given later. As pointed out by Corral & Jimenez (1991), span- 
wise asymmetry accelerates the transition process and renders the simulation more 
manageable. 

At the downstream boundary, a convective boundary condition which takes ad- 
vantage of the known base flow (Blasius solution) is implemented. It has the form 

where U j  denotes a prescribed characteristic velocity at the exit plane. U j  = (1,0,0) 
for calculations presented in the present work. Equation (3.2) ensures that the steady 
solution converges to the laminar velocity profile, while disturbances are allowed to 
be convected out of the computational domain. In contrast, the convective outflow 
condition in its original form (Pauley, Moin & Reynolds 1988), which sets the right- 
hand side of (3.2) to zero, tends to distort the mean flow profiles and produce 
erroneous oscillations near the exit boundary (Wang 1993). These numerical errors 
can contaminate the sensitive acoustic source calculation, although their effect is 
relatively small if one is only concerned with the hydrodynamic quantities. 

The time-dependent Navier-Stokes code has been subjected to several critical tests. 
It is shown to be capable of producing and maintaining steady-state solutions that 
are in excellent agreement with the Blasius solution. Additionally, it predicts correctly 
the linear amplification of two-dimensional T-S waves, in terms of both eigenmode 
shape and spatial growth rate, as compared with the result of linear stability theory. 

3.3. Flow structure during laminar breakdown 
The numerical simulation is carried out under the following conditions: Re = 1000, 
e2D = 0.025, f3' = 0.01, 8 = 0, 4 = n/4, p = 0.094, z = 40, to = 120, and 
g(x3) = 1 + 0. i(e-[(x1-1~73)~1~73]2 - e-[(x3+1.73)/1.73]2). The reference length scale used to 
define Re and other dimensionless variables is the displacement thickness 6* at the 
inflow boundary. The equivalent Reynolds number measured in terms of distance 
from the leading edge is Re, = 3.38 x lo5. 

Computations start on a 514 x 130 x 66 grid covering a computational domain de- 
fined in 0 < x1 < 200, 0 < x2  < 20 and -AX./2 < x3 < AX1/2, where a,, = 25.95 is the 
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FIGURE 1. Contours of negative spanwise vorticity -wXg at x3 m 1.1 during laminar breakdown. 
Contour values: (a) 0 to 0.94; ( b )  -0.23 to 1.81: (c) -0.59 to 1.61: ( d )  -1.30 to 2.13; ( e )  -1.52 to 
3.22; ( f )  -0.98 to 3.83. 

spanwise wavelength for the oblique eigenmode pair. As the simulation proceeds, the 
resolution requirement becomes increasingly severe within the travelling disturbance 
region, whereas near the upstream boundary the flow becomes basically steady. Grid 
refinement is performed twice in conjunction with shifts in computational boundaries 
following the movement of the wave packet. A cubic-spline interpolation scheme is 
used to interpolate solutions onto new grids. When the downstream boundary of 
the new computational domain exceeds that of the old one, the grid point data in 
the extended region are initialized by interpolating a steady two-dimensional flow 
field computed earlier. By the end of the simulation, the computational grid consists 
of 1282 x 130 x 258 points covering a shortened region 70 d x1 d 210. The entire 
simulation utilizes approximately 60 single-processor CPU hours on CRAY-C90. 

Figure 1 depicts a time sequence of the instantaneous contours of the negative 
spanwise vorticity -oX3, which is closely related to the normal shear dul/dx2, at 
x3 NN 1.1. Solid lines denote positive contour values, and dashed lines denote negative 
values. The plane x3 w 1.1, which lies slightly off the spanwise centre, is chosen because 
it corresponds to the approximate location of maximum shear. In the interpretation 
of these results, it might be noted that due to the slight asymmetry of the initial 
T-S wave packet, the peak-valley splitting along the spanwise direction during the 
secondary instability is not as clear-cut as for symmetric disturbances. Nonetheless, 
the transition is seen to follow closely the route that leads to fundamental (K-type) 
breakdown. 

The complete wave packet enters the upstream boundary x1 = 0 at t m 185. 
Through the action of primary and secondary instability mechanisms, it amplifies 
rapidly, evolving into a detached high-shear layer as shown in figure l(a). Underneath 
the shear layer lies a pair of counter-rotating streamwise vortices (lambda vortex) 
whose structure will be shown later. The high-shear layer intensifies to create a 
kink in figure l(b), which breaks down in figure l(c) to form a free vortex while a 
second kink develops. In figures l(d)-l(f) the detached high-shear layer continues 
to disintegrate, shedding more eddies into the free stream. In the meantime, vortical 



Sound radiation during laminar boundary layer breakdown 205 

(a )  t=311 (d) t=368 

o ' 8 ~ ~  0.4 ~ : ~ ~ ~ l  
60 I00 140 180 60 I00 140 180 0 

x 0.8 1 I 0.8 1 I g - - 1  (6) t=339 1 (e)  t=387 
RA n 

2 0  zl/ 60 100 140 180 0 7  60 100 140 180 

180 
0 

60 100 140 180 60 100 140 
0 

FIGURE 2. Evolution of disturbance kinetic energy integrated over the (xz, x3)-plane 
during laminar breakdown. 

activity intensifies in the near-wall region, and a new generation of shear layers 
originates there. The new shear layers are expected to experience similar breakdown 
processes. The flow field depicted in figure l ( f )  already bears a certain resemblance 
to turbulence. However, large-scale high-shear layers and streamwise vortices still 
dominate the overall flow structure, particularly in the rear part of the wave packet. 

Figure 2 illustrates the streamwise distribution of the disturbance kinetic energy 
integrated over the (x2, x3)-plane, at time instants corresponding to those in figure 1. 
The kinetic energy is calculated based on the excess velocities relative to the steady 
flow solution. The snapshots show the nonlinear distortion of the energy waveform 
which leads to the formation of one, two and multiple spikes, each corresponding to a 
free eddy shed from the disintegrating high-shear layer. These spikes are observed in 
experiments concerning the K -regime breakdown (Kachanov 1994) as high-frequency 
flashes of disturbances on the streamwise-velocity oscilloscope traces. Kachanov notes 
that the velocity flashes do not disperse while they propagate downstream near the 
edge of the boundary layer, a feature identifiable with solitons. It is conceivable that 
the energy waveforms exhibited in figure 2 may be modelled by certain evolutionary 
equations within the framework of soliton theory. The spread of the nonlinear wave 
packet in the streamwise direction during laminar breakdown is apparent in figure 2. 
The amplitude increase observed in the energy waveform reflects not only the growth 
in disturbance velocities, but also the spread of the wave packet in the spanwise 
direction. 

An interesting feature in the present simulation is the prescribed asymmetry relative 
to the spanwise centre. The asymmetry, albeit small at the beginning (10% relative 
to the overall wave amplitude), plays a significant role during the laminar breakdown 
process. The explicit effect of the spanwise asymmetry is illustrated in figures 3 
and 4, which depict, respectively, the streamwise vorticity contours in selected x2-x3 
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FIGURE 3. Streamwise vorticity contours at (a) t = 339 (contour spacing = 0.08); 
( b )  t = 409 (contour spacing = 0.20). 

cross-sections and the normal velocity contours in the plane x2 m 1.1, at two time 
instants before and after laminar breakdown. 

In figures 3(a) and 4(a) the two legs of the lambda vortex are seen to rise and merge 
gradually along the streamwise direction. The lambda vortex is 'crippled' in the sense 
that it has unequal strength in the two legs. The imbalance causes the two legs to 
become twisted near the tip of the vortex loop (cf. the third snapshot in figure 3a), 
accelerating the breakdown of the streamwise vortex structure and the high-shear 
layer supported by it. Similar observations have been made earlier by Corral & 
Jimknez (1991). This is in contrast to the case in which symmetry is imposed relative 
to the spanwise centre. A separate simulation conducted for a symmetric disturbance 
packet shows that the two vortex legs near the tip pinch together forcefully, stretch 
upwards, and push the high-shear layer farther into free stream. The transition process 
involves stronger-gradient transients that require a finer mesh to resolve. In addition, 
laminar breakdown takes place more slowly, resulting in increased simulation time. 

By the time depicted in figures 3(b) and 4(b), the front portion of the primary 
lambda vortex structure has disintegrated, and regions of smaller streamwise vortices 
emerge. The disturbance region becomes elongated as the turbulence-like small-scale 
structures travel at a faster speed than the lambda vortex. At the rear the lambda 
vortex legs are still recognizable. Figures 3(b) and 4(b) also demonstrate that, up to 
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FIGURE 4. Contours of instantaneous normal velocity at x2 - 1.1. 
(a )  f = 339, contour spacing = 0.015; ( b )  t = 409, contour spacing = 0.02. 

this stage, the disturbance region remains small in the spanwise direction relative to 
the width of the computational box. Interaction between the neighbouring patches is 
negligible despite the periodicity imposed in the spanwise direction. Thus, the wave 
packet can be justifiably considered isolated. 

The transition scenario described in this section is in qualitative agreement with 
experimental observations (Gaster 1993 ; Borodulin & Kachanov 1992). In particular, 
the coherent structures depicted in figures l(e) and l(f) are remarkably similar to the 
experimental measurements illustrated in figure 3 1 of Kachanov (1994). Quantitative 
comparisons are difficult because of a disparity in parametric conditions. The results 
of the present simulation are also in keeping with those of earlier numerical studies 
(Zang & Hussaini 1990; Kleiser & Zang 1991, for example). The latter are based 
on a temporal formulation (assuming streamwise periodicity) and do not exceed 
the two-spike stage. The observed similarity between the two types of simulations 
confirms that, as first suggested by Kachanov (1994), the laminar breakdown of a 
modulated wave packet proceeds in nearly the same way as that for a periodic T-S 
wave series. This illustrates the localized nature of resonant mechanisms that lead to 
laminar breakdown. 

4. Acoustic radiation 
4.1. Volume contribution: computational considerations 

Acoustic computation based on Lighthill’s theory is particularly simplified if the source 
is acoustically compact, i.e. if the region of unsteady flow is small in comparison to 
the emitted acoustic wavelength. The small retarded time variations in (2.9) can be 
approximated in the sense of multipole expansion, by expanding the integrands in 
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Taylor series about t - 1x1. Following this approach, the volume quadrupoles, which 
play an unambiguous role as a sound source, are examined first. A brief discussion 
of the viscous surface effects is deferred to $4.3. 

In the low-Mach-number, far-field limit ( M  + 0; 1x1 + a), the disturbance 
density arising from the two volume integrals in (2.9), henceforth denoted as pu, can 
be approximated by 

to leading order, where 

gives the net quadrupole strength. This form is adequate for studying the acoustics of 
wave packet transition at low Mach number, because the size of the wave packet and 
that of the energy-containing coherent structures are O ( M )  smaller than the acoustic 
wavelength. Since the compact quadrupole sources (4.2) do not contain retarded-time 
variations, they can be evaluated conveniently at each time step during the numerical 
integration of the Navier-Stokes equations. 

In the subsequent calculations, the Lighthill stress tensor is approximated by the 
instantaneous Reynolds stress only. The viscous stress terms given by (2.3) are in 
fact of octupole nature because they involve an additional spatial derivative. As 
illustrated by Crighton (1979, these octupoles are O(M3) smaller in magnitude than 
the Reynolds stress quadrupoles. Clearly, the quadrupole formulation given by 
(4.1) and (4.2) is not appropriate for calculating the explicit volume viscous effects. 
Viscosity also contributes indirectly to the quadrupole noise sources through entropy 
generation caused by diffusive small-scale processes represented by the dissipation 
function @ (cf. (2.7)). This effect is again small at relatively large Reynolds numbers 
(Crighton 1975) and is hence not evaluated. 

If the source region is not compact, a more general method of computing the 
Lighthill analogy, based on (2.9) or its time-derivative form with full retarded time 
variations, must be employed. This requires formidably large amount of computer 
storage space if one desires the complete far-field solution. As a result, acoustic 
quantities are often evaluated at a limited number of observation points in a typical 
calculation. Useful techniques to account for the retarded time variations have been 
explored by, for example, Sarkar & Hussaini (1993) and Wang, Lele & Moin (1996). 

A serious difficulty confronts computational acousticians when vortical structures 
enter or pass out of the computational domain, causing powerful spurious noise which 
may mask the true physical sound (Crighton 1993; Wang et al. 1996). This arises 
because, based on (4.1) and (4.2), the calculated sound signal is determined by the time 
derivatives of the total Lighthill stresses in the source region. If the entire disturbance 
region is not included in the finite computational domain, the time variations of the 
total Qii are dominated by the fluxes of Tii across the integration boundaries, rather 
than by the internal generation of these quantities within the control volume. 

Steps have been taken in order to eliminate the non-physical boundary effects. 
First, the computational boundaries for the Navier-Stokes simulation of the source 
field are maintained sufficiently far away from the region of significant disturbance, 
as is evident from a comparison of the computational box size (140 x 20 x 25.95) with 
the size of flow structures displayed in figures 1 4  (note that only part of the domain 
is plotted in each figure to magnify the main feature). This measure alone eliminates 
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FIGURE 5. Contours of instantaneous normal vorticity at x2 = 2.3, t = 292. 
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most of the boundary errors at the expense of increased computational cost. However, 
it is not possible to keep all the disturbances away from the downstream boundary 
even if a very long computational domain is used. The difficulty is illustrated in 
figure 5,  which depicts contours of the instantaneous normal vorticity at x2 = 2.3, 
t = 292. The primary structure on the left is identified with the wave packet. The 
transient ripples induced by the wave packet extend all the way to the right because 
they are convected near the edge of the boundary layer at a faster speed. 

The residual boundary effects caused by these ripples are removed by using a 
corrective formula derived by Wang et al. (1996), 

(4.3) 

where the dots denote time derivatives, Fij is the flux of Lighthill stress components, 
and S the downstream boundary of the source integration domain. Equation (4.3) 
assumes that Tij is convected passively out of the outflow boundary at the local mean 
velocity. The approximation works well for the present problem, as demonstrated 
below, because the ripple disturbances are linear and travel at approximately the 
free-stream velocity. 

Figure 6 illustrates the effect of boundary correction on Q12, the component with 
the largest boundary influence. The dashed and dotted lines, representing the original 
quadrupole source and the time-derivative of the outflow boundary flux, respectively, 
show oscillations of similar magnitude but opposite phase for t < 330. As a result 
the corrected acoustic source (the solid line) remains nearly zero during this period. 
Had the spurious boundary contribution not been subtracted, one would predict 
incorrectly sound radiation when the wave packet transition is still in an early stage 
(cf. figure 1). At later times, figure 6 shows that the boundary flux contribution 
continues to be significant although the physical source gradually becomes dominant. 
The vertical dotted line in the figure indicates the time when the computational 
domain is reduced from 0 < x1 < 200 to 40 < XI < 180 with higher resolution. This 
causes a discontinuity in Q12 and F12, but Qi2 remains continuous since the physical 
source is completely contained within both domains. 

In what follows the prime in Qij is dropped to simplify notation, with the un- 
derstanding that the quadrupole sources presented are free of boundary artifacts. 
Convergence of the source terms, including the surface shear stress terms to be pre- 
sented later, is monitored by evaluating them in two domains of integration, whose 
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FIGURE 6. Time variation of a quadrupole source component, with and without boundary correction: 
-____-  , QI2;  ........- 9 F12;  - , Q12 + F12. The vertical dotted line denotes the time when a shift in 
computational domain and mesh refinement take place. 

downstream boundaries are a short distance (- 5 displacement thicknesses) apart. 
Agreement between the two solutions indicates that no boundary effect is present. As 
the wave packet approaches the outflow boundary, the two solutions begin to deviate, 
at which point the computational box is moved to a new downstream location. 

4.2. Volume contribution: numerical results 
Figure 7 illustrates the time variations of the net volume quadrupole terms Qij 
calculated from (4.2) with the appropriate boundary corrections. Part (a)  depicts 
the three longitudinal quadrupoles (i = j ) ,  and part (b )  the lateral ones (i # j ) .  
Since the Lighthill stress tensor is symmetric, only six components are needed to 
define Qij completely. The characteristics of source oscillations should be analysed in 
conjunction with the flow structures shown in figure 1. The quadrupole source signals 
generated by wave packet evolution are relatively weak initially, and then amplify 
dramatically as the shear layer begins to break down. Thereafter, the Qij curves are 
seen to develop oscillations dominated by frequencies 5 to 7 times the basic T-S wave 
frequency (T-S wave period NN 66.5). 

A close examination of the Q11 curve and figures 1 and 2 indicates a strong cor- 
relation between source oscillation and vortex shedding in the boundary layer. At 
t = 409, the number of spikes (eddies) shown in figure 2 is approximately equal to the 
number of cycles experienced by Q11. Thus it appears that the dominant mechanism 
for generating quadrupole sound is the intermittent vortex shedding resulting from 
strong inflexional instability of the high-shear layer. In his experiments with modu- 
lated T-S wave trains, Gaster (1993) observes bursts of secondary oscillations due to 
shear layer instability at 5 to 6 times the basic T-S wave frequency, coinciding with 
the dominant source frequencies calculated in the present study. Gaster further notes 
that the ‘bursting’ frequency is independent of the Reynolds number. The agreement 
between the frequency of shear layer instability and the acoustic source frequency 
further supports the assertion that the large-scale shear layer breakdown is primarily 
responsible for the calculated quadrupole sound. 
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It is interesting to notice that no significant increase in higher frequency oscillations 
is observed in figure 7 as transition proceeds to create increasingly refined scales. 
Likewise, the amplitudes of Ql j  remain basically invariant with time, even though 
the total kinetic energy of the source region (the area under each curve in figure 2) 
grows at an exponential rate. These observations can be explained in terms of the 
localized nature of shear-layer eddy shedding which dominates the instantaneous 
sound production. The small-scale features and the convected large eddies produced 
earlier are less efficient as quadrupole acoustic sources, although they contain large 
amount of disturbance energy. 

One observes from figure 7 that the acoustic emission level is very low at the 
early stages of wave packet transition. At the earliest instant plotted ( t  = 300), the 
wave packet has already evolved into a lambda-vortex/high-shear-layer structure. To 
exemplify the behaviour of acoustic source terms during the primary and secondary 
instability phases of amplification, the longitudinal components of Qij are depicted in 
figure 8 for 200 < t < 300. They exhibit either monotonic growth or extremely low- 
amplitude oscillations at the basic T-S wave frequency (notice the different vertical 
scales used in figures 7 and 8). Other source terms behave in a similar fashion. Thus 
it can be concluded that linear and weakly nonlinear amplification of the T-S wave 
packet produces insignificant sound relative to the more violent breakdown processes 
later. Unfortunately, only the former regime is amenable to rigorous analytical 
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treatment (e.g. Ffowcs Williams 1967; Dolgova 1977; Akylas & Toplosky 1986; 
Haj-Hariri & Akylas 1986). 

For flow-noise problems it is generally recognized that the energy-containing co- 
herent structures provide the predominant noise source. The fine-scale structures 
associated with high-frequency phenomena are largely irrelevant (Crighton 1975), a 
conclusion supported by the lack of relatively high-frequency components in figure 7. 
To test the sensitivity of quadrupole sources to the size of flow structure, the computed 
flow field is filtered in (XI, x3)-planes using a box filter (Piomelli et al. 1991) of varying 
width before the volume integration in (4.2) is performed. The results for Ai = 2Axi, 
4Axi, and 8Axi, where Ai is the filter width in the i-direction (i = 1 and 3) and Axi is 
the mesh spacing, are compared in figure 9 with those without filtering. For brevity 
only the three longitudinal quadrupoles are given; the three lateral ones behave in the 
same way. Clearly, the basic source characteristics are preserved after filtering the flow 
field with a filter of widths up to 4Ai (26,. for Q22). With a filter width of 8Ai, the results 
for QI1 and Q33 still show qualitative agreement with their unfiltered counterparts 
in terms of basic frequency and amplitude. This verifies that removing small-scale 
flow structures indeed has little impact on the distant-field sound radiation. Since the 
application of a box filter also alters the lower-wavenumber (large-scale) components 
to some extent, the actual agreement between unfiltered and filtered source quantities 
might be even better had the large-scale motion been precisely preserved. 

The comparison made in figure 9 is also an indication of numerical convergence. 
It illustrates that the direct numerical simulation for the source field has adequately 
resolved the scales relevant to sound production. In fact, the simulation can be 
conducted on a coarser grid if the subgrid-scale stress can be modelled adequately. 
This suggests the promising role that can be played by the less-expensive large-eddy 
simulation methods for flow-noise prediction. 

As an example, figure 10 depicts the distant sound field generated by the volume 
(Reynolds stress) quadrupoles in terms of iso-contours of the acoustic pressure pv 
(G y p " )  at X3 = 0 and t = 420. The source region is centred at 1x1 = 0, bearing 
in mind that X is scaled relative to the acoustic length scale. The free-stream Mach 
number is M = 0.02, characteristic of underwater applications. The quadrupole 
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radiation pattern suggests contributions from the longitudinal components but not 
the lateral ones. The latter are identically zero due to cancellations from wall reflection 
and the specific plane ( X ,  = 0) selected for plotting (cf. (4.1)). It is worth pointing 
out that the extremely small contour values in figure 10 result from the M 5  factors in 
(4.1). In the present calculation, based on the acoustic analogy, sufficient arithmetic 
precision is maintained since the radiated pressure field is evaluated separately from 
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the near-field computation. Given the huge disparity in acoustic and hydrodynamic 
magnitudes, a direct computation of acoustic radiation along with the source region 
using the compressible Navier-Stokes equations would be overwhelmed by computer 
round-off errors. 

4.3. Contribution from surface shear stress: an unsettled issue 
The interpretation to be placed on the surface integral in (2.9) has long been a 
subject of debate (Crighton et al. 1992). The central issue is whether the unsteady 
surface shear stress contributes to sound generation or is purely a propagation effect. 
If, following Landahl (1975), the wall shear stress is considered a generation term 
dominated by the hydrodynamic (non-acoustic) motion near the wall, the same 
multipole expansion procedure as for the volume sources can be invoked, and the 
surface shear stress contribution to the far-field density disturbance can be expressed 
in terms of net surface dipoles and quadrupoles. Numerical values of these compact 
surface source terms are documented in Wang, Lele & Moin (1994). Their magnitudes 
remain small during the shear layer lift-up and the generation of the first three spikes. 
As the laminar wave packet approaches the turbulent spot stage, however, the near- 
wall shear intensifies, giving rise to a surge in the dipole strength. Based on these 
results, and the Mach number scaling factors in (2.9), one would then conclude that at 
the late transition stage, the surface sound due to viscous stress fluctuations dominates 
the far field for a low-Mach-number flow, in agreement with Landahl (1975). 

It should be emphasized, however, that the above result is based on the source 
data obtained from an incompressible simulation, as a leading-order approximation 
to the weakly compressible flow field. The validity of this treatment has been called 
into question in the low (supersonic)-wavenumber range, responsible for radiation 
to the distant field. As pointed out by Crighton et al. (1992), the shear stress z,2 

involves linear velocities and thus does not vanish even in the acoustic far field. 
Howe (1979) argues that the surface stress components at supersonic wavenumbers 
correspond to acoustic modes, and should be included in the propagation operator. 
Their effect, which actually causes diminished radiation, is found to be negligibly 
small at low Mach numbers except at the grazing angle. Howe’s analysis does not 
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address the surface shear stress arising from the nonlinear hydrodynamic or turbulent 
motion, which has a significant low-wavenumber component as well, for the localized 
breakdown event considered here. Both the acoustic and hydrodynamic contributions 
are included in the analysis of Haj-Hariri & Akylas (1985), who conclude that the 
viscous shear stress dipoles also partake in sound generation. Their impact on the 
overall sound is found to be small for high-Reynolds-number flows because of a Re-’ 
factor. A definitive determination of the surface shear stress effect requires solutions 
to the compressible Navier-Stokes equations in a larger computational domain that 
covers both the transitional near field and the acoustic far field, which is beyond the 
scope of the present investigation. 

This discussion is concluded with a historical note on a related linear ‘source’ term 
involving the normal stress, primarily the pressure. This term had been misinterpreted 
as a powerful dipole until Powell’s (1960) discovery that the ‘dipole’ actually represents 
the specular image of the incident quadrupole system. The paradox is resolvable 
in the context of the Kraichnan-Phillips theorem (Kraichnan 1956; Phillips 1956; 
Howe 1992), which states that for an incompressible flow over a homogeneous plane 
boundary, the total normal force, and hence the ‘dipole’ strength must integrate to 
zero. Powell’s reflection principle does not remove the surface shear stress dipoles, 
however, and there has been no direct proof, despite the suspicion, that an analogous 
situation exists concerning the shear stress terms. In the case of normal stress, each 
localized positive pressure spike is necessarily balanced by more extensive regions of 
negative pressure. Similar behaviour has not been observed for the hydrodynamic 
wall shear stress in the present calculation. A more thorough, rigorous investigation 
is needed to clarify this issue in a fundamental manner. 

5.  Summary 
A computational study has been carried out concerning the sound emission from 

a localized disturbance, as it undergoes transition to turbulence in a boundary layer 
formed on a flat, rigid surface. The flow is characterized by small free-stream Mach 
number and a Reynolds number of 1000 based on the displacement thickness. Direct 
numerical simulation is applied in conjunction with the Lighthill acoustic analogy 
to determine the near-field flow dynamics and the far-field sound, respectively. The 
objectives are to establish a relationship between specific flow processes and the 
emitted acoustic signals, and to identify the primary noise source. 

The boundary-layer disturbance initially consists of a modulated, three-dimensional 
T-S wave packet emulating that excited by free-stream turbulence in natural transition. 
Detailed accounts of the subsequent evolution, from the early linear stage to the final 
laminar breakdown, are obtained by solving the full incompressible Navier-Stokes 
equations. The simulation allows streamwise growth of the boundary layer thickness 
as well as spanwise asymmetry. The latter effect promotes interaction between the 
(unequal) lambda vortex legs and accelerates the high-shear layer breakdown and the 
associated eddy shedding. The route to turbulence is seen to follow the usual sequence 
of events for the fundamental breakdown type. The flow structures are in qualitative 
agreement with the experimental observations of Borodulin & Kachanov (1992). 

Acoustic computation based on the Lighthill theory is facilitated by a multipole 
expansion in the compact source limit. The radiated far-field acoustic density (pres- 
sure) consists of contributions from volume and surface source functions due to 
the fluctuating Reynolds stress and the wall shear stress, respectively. The volume 
quadrupole sources produce negligible sound throughout the primary and secondary 
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instability processes of the wave packet. As the detached high-shear layer starts to 
disintegrate, dramatic amplification occurs to the volume quadrupole sound. The 
primary frequency (5-7 times the basic T-S wave frequency) of quadrupole radiation 
corresponds to the frequency of spike (eddy) generation in the near field, indicating 
the latter to be the physical source. The surface shear stress experiences a surge 
at a later breakdown stage as the disturbance region evolves to a turbulence spot. 
However, owing to the lack of compressibility effects in the source field data, the 
numerical results are inconclusive with regard to the role of the wall shear stress 
fluctuations in sound production. Further study is needed to elucidate this impor- 
tant aspect of boundary layer noise, perhaps by direct numerical simulation using 
compressible Navier-Stokes equations. 
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